[Total No. of Printed Pages : 1

Roll No

EE-402 (GS) B.E. IV Semester Examination, June 2020 Grading System (GS) Electromagnetic Theory *Time : Three Hours*

Maximum Marks : 70

- *Note:* i) Attempt any five questions. ii) All questions carry equal marks.
- 1. Define Gaussian surface. Calculate total electric flux leaving the cylindrical surface $\rho = 4.5$, $z = \pm 3.5$ for a line charge on *x*-axis with $\rho_{\rm L} = 2 \cos (0.1x)$, *x* is in radians.
- 2. Derive the expression for transmissions coefficient and reflection coefficient of uniform plane waves with normal incidence at plane dielectric boundary.
- 3. a) State and explain Ampere's circuital law.
 - b) What do you understand by boundary conditions? Explain boundary conditions due to magnetic field.
- 4. Write short notes on :
 - i) Poisson's equation ii) Uniqueness theorem
- 5. a) What is polarization? Explain polarization of waves and their types.
 - b) Deduce Maxwell's equation in differential form by preparing tabular chart.
- 6. Find the magnitude of electric field intensity in a simple of silver having $= 6.17 \times 10^7$ mho/m and $\mu_e = 0.0056 \text{ m}^2/\text{V}-\text{S}$. If
 - i) Drift velocity is 1 mm/ ∞ ii) Current density in 1 $\vec{0}$ A/m.

OR

Define electrostatic previntial and electric field intensity. Hence show that, $E = -\nabla V$.

7. Obtain electric field in all regions due to following charge distribution in free space.

$$\rho(r, \phi, z) = 0, 0 < r < a$$

= $\rho_0, a < r < b$
= 0, b < r < ∞

OR

For uniform plane wave in sea wate $\mathfrak{g} = 4$ S/mt, $\in = 80 \in_0$, $\mu = \mu_0$. Find α , β , η and λ at

- i) 10,000mHz
- ii) 25 KHz
- 8. Write short notes on: (any two)
 - a) Method of images
 - b) Magnetic dipole and its moment
 - c) Biot-Savart law
 - d) Divergence theorem
 - e) Electric field intensity

EE-402 (GS)

Download all NOTES and PAPERS at StudentSuvidha.com